Leseprobe

Grundlagen der Pneumatik

Lehrgang 3

Dr.-Ing. Paul Christiani GmbH & Co. KG www.christiani.de

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

seit 1931

Vorwort 5

Industrielle Automation kombiniert vielfältige Systeme und Komponenten. Bewegung und Kraft werden im allgemeinen durch mechanische, elektrische, hydraulische und pneumatische Elemente sichergestellt. Dabei besticht die Pneumatik durch einfache Anwendung, günstiges Preis-Leistungsverhältnis, hohe Sicherheit und geringe Umweltbelastung. Sie ist heute in beinahe allen Industriezweigen vertreten. Pneumatik ist vorherrschend in neuen, fortschrittlichen Branchen. Sie ist jedoch auch in alteingesessenen Betrieben (Werkzeugmaschinen-, Nahrungsmittel-, Automobil und Elektroindustrie) anzutreffen. Als ein Beispiel modernster Technologien seien hier Halbleiter und integrierte Schaltkreise aufgeführt, für welche in allen Herstellungsphasen Pneumatik eingesetzt wird. Um den wachsenden und rasch ändernden Anforderungen gerecht zu werden, entwickelt SMC laufend neue Komponenten.

Ziel dieses Lehrbuches ist es, dem Leser die Zusammenhänge der Themen verständlich zu machen, ohne dass die mathematischen Zusammenhänge im Detail diskutiert werden. Angesprochen werden soll ein breiter Leserkreis (z.B. Facharbeiter, Techniker, Ingenieure usw.), welcher nach dem Studium dieses Lehrbuches auf eine einfache Weise ein Pneumatik- und Vakuumsystem auslegen kann. Zudem werden die Grundbegriffe der Steuer- und Regeltechnik behandelt, ohne jedoch auf die komplizierten mathematischen Betrachtungen einzugehen.

Der schnelle Fortschritt in der Mikroprozessortechnologie erfordert, dass das Verständnis und die Kenntnis über die Schnittstelle Pneumatik-Elektronik ständig erweitert und vertieft werden müssen. Insbesondere in der Sensorik, Steuerungen (SPS, PLC usw.) und BUS-Systemen wurden in den letzten Jahren grosse technologische Fortschritte erzielt. Um Entscheidungsgrundlagen zu schaffen, zeigt dieses Lehrbuch eine Übersicht, wie elektronische Komponenten in der industriellen Automation mit der Pneumatik zusammen integriert werden können.

Weisslingen, 30. Januar 2012

Die Verfasser

Ronny Balmer, SMC Pneumatik AG, Weisslingen Marc Schultheiss, SMC Pneumatik AG, Weisslingen Kurt Meier, m+s Industrielle Automations AG, Winterthur

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

1

seit 1931

1. Erweiterte Pneumatik	
Ad Financia Annua Cons	
1.1 Eigenschaften von Gasen	9
1.1.1 Isotherme Zustandsänderung (nach Boyle-Mariotte)	9
1.1.2 Isobare Zustandsänderung (nach Gay-Lussac)	10
1.1.3 Isochore Zustandsänderung	10
1.1.4 Allgemeine Gasgleichung	10
1.1.5 Bernoullische Gleichung	11
1.2 Druck und Durchfluss	12
1.2.1 Druckeinheiten	13
1.3.1 Durchflusseinheiten	14
1.4 Zusammengesetzte c- und b-Werte	19
1.4.1 Berechnen der zusammengesetzten C- und b-Werte	19
1.4.2 Berechnungsbeispiel	21
1.4.2 Querschnitt S [mm²]	22
1.4.3 Durchflusskapazität von kleineren Leitungen	22
1.5 Grenzwerte pneumatischer Antriebe	23
3.1.5 Spitzenluftverbrauch	23
3.1.6 Lastfaktor	25
1.6 Massnahmen gegen die Kondensation in pneumatischen	26
Systemen	
1.6.1 Das Kondensationsphänomen	26
1.6.2 Der Kondensationsvorgang	28
1.6.3 Massnahmen gegen die Kondensation	31
1.7 Kinetische Energie	34
1.8 Interne und externe Anschläge	35

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

1

seit 1931

1. Erweiterte Pneumatik 15

Das kritische Druckverhältnis b kann mit Hilfe des Leitwerts C und jedem Messpunkt im unterkritischen Bereich rechnerisch ermittelt werden.

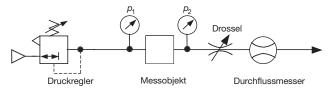


Abb. 1.4: Messaufbau nach ISO 6358-1989, JIS B 8390-2000 (vereinfachte Darstellung)

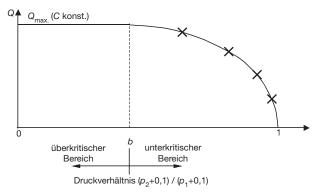


Abb. 1.5: Durchflussfunktion in Abhängigkeit vom Druckverhältnis

Der Durchfluss kann mit Hilfe des kritischen Druckverhältnises b und des Leitwertes C an jedem Punkt im unterkritischen Bereich rechnerisch ermittelt werden.

Ist der *b*-Wert bekannt, kann mit Hilfe einer einfachen Formel der überkritische Strömungsbereich ermittelt werden.

Beispiel: Bei einem Ventil wird der b-Wert 0,36 und ein Eingangsdruck von 0,6 MPa (p_1) angegeben. Bei welchem Druck (p_2) wird der überkritische Strömungsbereich (Schallgeschwindigkeit) erreicht?

überkritischer Strömungsbereich

$$b = \frac{\rho_2 + 0.1}{\rho_1 + 0.1}$$

$$\rho_2 = b \cdot (\rho_1 + 0.1) - 0.1$$

$$p_2 = 0.36 \cdot (0.6 + 0.1) - 0.1$$

 $p_2 = 0,152 \text{ MPa}$

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

seit 1931

50

2. Proportionaltechnik in der Pneumatik

2.2 Stellungsregler

2.2.1 Grundsätzliches

Düse/Prallplattesystem

Korrektureinrichtung einer Regeleinheit Das Herzstück bei einigen Stellungsregler ist das Düse/Prallplattesystem. Dieses gehört zur Korrektureinrichtung einer Regeleinheit. Wie in Abb. 2.12 dargestellt, verhält sich die Druckluft in p2 proportional zum Luftspaltabstand g zwischen Prallplatte und Düse, jedoch nur in einem vom Hersteller bestimmten Bereich. Durch eine Führungsgrösse (Druck, Temperatur oder elektrisch) beeinflusst die Prallplatte den Luftspalt. Ein grosser Luftspalt bedeutet tiefen Druck in p2. Besteht kein Luftspalt, entspricht der Eingangsdruck p1 dem Ausgangsdruck p2. Es gilt nun, bei der Entwicklung eines Stellungsreglers den optimalen Bereich des Spaltes zu ermitteln.

Der Druck von *p2* wird in der Stelleinrichtung weiterverarbeitet, um z.B. über einen Schwenkantrieb eine Klappe zu bewegen. Das Düse/Prallplattesystem weist einen ständigen Eigenluftverbrauch auf, was bei einer Anwendung mit Edelgasen sowie bei sehr kleinen Drücken (bis 0.005 MPa) nicht empfohlen wird.

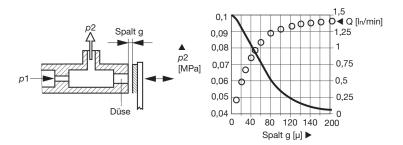


Abb. 2.12: Prinzip und Druckverlauf eines Düse/Prallplattesystems

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

seit 1931

88

3

3. Vakuumtechnik

Die kompakte Abmessung (72,9 x 52,5 x 9,9 mm) und das geringe Gewicht (ca. 50 g) erlauben es, Vakuumerzeugereinheiten nahe am Verbraucher (Saugnapf) zu montieren.

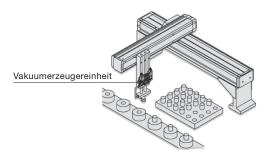


Abb. 3.16: Anwendungsbeispiel mit einer Vakuumeinheit

3.2.5 Vakuumfilter

Geringer Druckabfall ist wichtig

Vakuumfilter werden eingesetzt, um die durch den Saugnapf angesaugte Luft zu reinigen. Dadurch wird verhindert, dass Fremdkörper und Flüssigkeiten in den Ejektor gelangen und die Funktionssicherheit beeinträchtigen. Bei der Auswahl der Vakuumfilter ist im Gegensatz zu den Überdruckfiltern auf möglichst geringe Strömungswiderstände zu achten.

Abb. 3.17: Vakuumfilter für verschiedene Saugleistungen

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

seit 1931

4. Schnittstelle Pneumatik – Elektronik 139

Auch hier gibt es viele verschiedene Anschlussmöglichkeiten. Um sie alle zu verstehen, sind einige Grundkenntnisse der Elektrotechnik erforderlich. Nebst der Berücksichtigung von Spannung und Strom muss auch an den inneren Widerstand (Ri) der Sensoren gedacht werden. Ist dieser zu gross oder sind zwei bis drei SPS in Reihe an den Sensor angeschlossen, so kann die Summe aller Widerstände zu gross sein. Es wird nicht mehr korrekt gemessen.

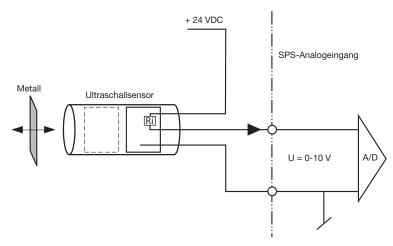


Abb. 4.7: Analog Sensor (Ultraschall) an SPS angeschlossen

Spannung (unipolar)

0 bis 10 V

Das einfachste aller analogen Messsignale ist die «Unipolare» Spannung. Sie hat den Bereich von 0 bis 10 V. Das Signal kann direkt mit einem Messgerät erfasst werden. Negative Spannungen dürfen keine vorkommen. Das Spannungs-Messsignal ist jedoch sehr störanfällig, da elektromagnetische Einkopplungen dieses unbrauchbar machen. Daher sind nur abgeschirmte Kabel einzusetzen. Zudem eignen sich diese Signale nur für kurze Distanzen, da bei langen Leitungen ein Spannungsabfall resultiert, was wiederum das Messergebnis verfälscht. Daher ist dieses Messsignal im Industriefeld ungeeignet.

Spannung (bipolar)

-10 V bis +10 V

Natürlich reichen die einfachen Messsignale für das Ansteuern von Motoren nicht mehr. Der analoge Bereich wurde von –10 V bis +10 V erweitert. So kann man –10 V bis 0 V z.B. für den 0 - 100 % Drehzahl links herum nutzen und den positiven Bereich von 0 bis +10 V für die andere Drehrichtung einsetzen.

Schnittstellen der Pneumatik I Lehrgang 3

4

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

seit 1931

Stichwortverzeichnis

_	
A /D Mandhung	142
A/D-Wandlung	138
Analoge Sensoren	
ANSI/NFPDA T3.21.3-1990	35
	14
Antriebe	23
Antriebstechnik	39
Anweisungsliste AWL	131
ASI	161
Atmosphäre	77
AV	17
В	
B&B	176
Baum	155
Bernoulli	11
Berührungslose Schalter	145
Beschichtete Sauger	97
Bit	142
Boyle-Mariotte	9
Bus	155
Bussysteme	123
By-Pass-Schaltung	32
С	
CAN	163
CANopen	163
CV	17
D	
Dämpfung	46
Dehnungsmessstreifen	151
(DMS)	
DeviceNet	164
Dezentrale Vakuumerzeu-	116
gung	
Differenzdruck	12
Digitale Sensoren	138
DIN 28400	78
Druckeinheiten in der	79
Vakuumtechnik	
Druckluftenergie	9
Durchflusseinheiten	14
Durchflussschalter	89
Düse/Prallplattsystem	50,63

E	
E/P-Wandler	60, 61
Echtzeit	153
Echtzeit-Ethernet	153
Echtzeitfähigkeit	153
Einstufen-Ejektor	82
Ejektoren	82
Elektronische Schalter	147
Empfindlichkeit	47
Energiebedarf	107
EtherCAT	170
Ethernet	154
EtherNet/IP	168
Evakuierzeit	117
Explosionsgefährliche	144
Bereiche	
Faltenbalg	92
Feldbussysteme	152
Flach	91
Flache Sauger	93
Fluorkunststoffolie	97
Führungsgrösse	43
Funktionsplan FUP	132
Tanktionopian For	102
G	
Grenzwerte	23
Grosse Sauger	94
Н	
Halogenierten NBR	97
Haltekraft	103
Hochvakuumtechnik	77
Hysterese	47
<u>I</u>	
IEC1131-Norm	131
Induktive Näherungsschalter	148
Industrial Ethernet	166
ISO 6358-1989	14
Isobare	10
Isochore	10

ISO-Norm 7498	158
Isotherme	Ç
J	
JIS B 8390-2000	14
K	
Kapazitive Näherungsschal-	148
ter	
Kinetische-Energie	34
Kondensation	26
Kontaktplan	132
KOP	132
Korrektureinrichtung	43
Kritisches Druckverhältnis b	14
Kunststoffleitungen	22
KV	17
L	
Lastfaktor	2
Lebendes Null	14
Lebensdauer	26
Leitwert C	14
Linearität	47
Luftdruck	7
M	
Mechanische Vakuumerzeu-	8
ger	
Mehrstufen-Ejektoren	83
Membranschlauch	32
MEMS	89
Messeinrichtung	43
Note	4.5
Netz Nullaunkteinetellung	15
Nullpunkteinstellung	48
0	
ODVA	164
Öffner	138
Optpelektronische Sensoren	149
OSI-Referenzmodell	158
Ovale Sauger	93

8

Artikelnr.: 89816 | ISBN 978-3-86522-690-7

seit 1931

Stichwortverzeichnis

P	
PEEK	97
PID-Regler	49
Piezokristalle	150
Pneumatikleitungen	22
Poröse Werkstücke	106
PowerLink	172
PROFIBUS	165
PROFIBUS	169
Programmiertechniken	131
Proportionalmagnet	67
Proportionalventile	60
Puls-Frequenz-Modulation	65
Puls-Weiten-Modulation	65
(PWM)	
Q	
QN	17
Qn-Wert	17
Quellbetrieb	134, 136
(PNP, sourcetype)	
Querschnitt S	22
R	
Reedschalter	147
Regelbereichseinstellung	48
Regeldifferenz	43
Regelgrösse	43
Regelkreis	42
Regeln	42
Regelstrecke	43
Regeltechnik	39
Regler	43
Ring	156
Rückstau	85
-	
<u>s</u> S	17
Saugleistung	80
Saugleistung Saugnent Refestigungserten	80,84
Saugnapf-Befestigungsarten	94
Saugnäpfe	91

Saugnapffläche	102
Saugnapfformen	91
Saugnapfwerkstoff	96
Saugplatte	111
Schliesser	138
Schnellüftungsventile	31
Schockwellen	106
Schrittablauf (Graphset)	133
Schwamm Sauger	93
Senkbetrieb (NPN, sinktype)	135, 136
Sicherheitsfaktor	102
Sicherungsventil	99
Spannung (bipolar)	139
Spannung (unipolar)	139
Spitzenluftverbrauch	23
Stabilität	45
Statische Genauigkeit	46
Staudruck	85
Stelleneinrichtung	43
Stellgrösse	43
Stellungsregler	50
Stern	156
Störgrösse	43
Stossdämpfer	36
Stromsignal	140, 141
Strukturierter Text SCL	133
Т	
Tastenventil	100
Technischer Normliter (ANR)	18
Topologie	154,171
U	
überkritischer Strömungsbe-	15
reich	
Ultraschall-Näherungsschal-	149
ter	
Unterdruck	77
v	
Vakuumdruckschalter	89
Vakuumerzeugereinheiten	87
-	

Vakuumerzeugung	80, 112
Vakuumfilter	88
Vakuumschalter	89
Vakuumsicherungsventil	101
Vakuumsystem	117
Vakuumtechnik	77
Vakuumüberwachung	89
VDI 2173	14
Verfahrenstechnik	39
Verformbare Werkstücke	106
Vergleichseinrichtung	43
w	
Wiederholgenauigkeit	47
Windkräfte	106
Z	
Zentrale Vakuumerzeugung	115
Zyklonsauger	97,98,
	110
Zykluszeiten	153
Zylinder	25
Zylinderschalter	146

.

8