Leseprobe

Dr.-Ing. Paul Christiani GmbH & Co. KG www.christiani.de

Unterlagen zur Prog	grammerstellung	Übung 1
Einleitung		
In den ersten sec fräsmaschine das einen Utensilienha kennen lernen bzw	hs Übungen des vorliegenden Bandes "CI Werkstück herstellen, das in Bild 1 auf der r alter, der aus Aluminium gefertigt wird und a w. üben können:	NC-Fräsen" werden Sie auf einer CNC-Vertikal- nächsten Seite dargestellt ist. Es handelt sich um n dem Sie die folgenden Bearbeitungsvorgänge
 Zentrieren Bohren Senken Fräsen der Aul Fräsen der Inn 	3enkontur enkontur	
Dabei werden Sie Solche Zyklen sin deutlich verringen	verschiedene Arbeitszyklen anwenden, z. E Id heute auf jeder modernen Steuerung vo n.	 zum Tieflochbohren oder zum Taschenfräsen. rhanden, da sie den Programmierungsaufwand
In der vorliegende stellung erledigt w	n ersten Übung wollen wir uns mit all den A verden müssen. Es sind	ufgaben beschäftigen, die vor der Programmer-
 die Anfertigung die Aufstellung die Aufstellung die Ermittlung 	g einer Spannskizze g einer Koordinatentabelle g eines Werkzeug- und Bearbeitungsplans der Werkzeuge	
Weitere Themen o	lieser Übung sind	
die programmidie Eingabe de	erte Nullpunktverschiebung er Werkzeugdaten	
Zur Erinnerung ur nullpunkt und Ma	nd zur Vertiefung werden wir uns noch einn schinenkoordinatensystem beschäftigen.	nal mit dem Thema Referenzpunkt, Maschinen-

Bohrzyklen	Ubung
Ein zweiter Grund is	lie Tatsache, dass manche Steuerungen den Werkzeugwechsel zu Beginn des Satze
ausführen, in dem er	ogrammiert ist, andere am Ende des Satzes. Probleme, die dadurch entstehen könnter
vermeidet man sich	wenn man den Werkzeugwechsel in einen eigenen Satz schreibt.
Programmier	ng der Bohrungen
Im folgenden Kapite	ollen einige der Bohrungen des Utensilienhalters "zu Fuß" programmiert werden, als
ohne Anwendung vo	arbeitssparenden Zyklen, die kommen im nächsten Kapitel.
Beginnen wir mit d	n ersten Vorgang im Werkzeug- und Bearbeitungsplan aus der letzten Übung, der
Zentrieren und Anse	ken der Bohrungen. Sie wissen sicher, dass dazu kein herkömmlicher Zentrierbohre
verwendet wird, son	rn ein spezieller NC-Anbohrer. Dieser besitzt zwei Schneiden mit einem Spitzenwinke
von 90°, in Bild 12 c	Übung 1 ist er abgebildet.
Mit diesem NC-Anb	rer ist es möglich so tief zu zentrieren, dass nach dem Bohren eine Senkung zurück
bleibt, deren Größe	nat natürlich von der Zentriertiefe ab (siehe Bild 1). Zusätzlich ist der NC-Anbohrer seh

NC-Anbohrer Zentriertiefe Z

Bild 1: NC-Anbohrer in voller Bohrtiefe

In Bild 1 kann man den Zusammenhang zwischen der Zentriertiefe Z und dem Durchmesser D der Senkung erkennen. Bei vorangegangenem Durchmesser der Bohrung und vorgegebener Senkung kann daraus die Zentriertiefe berechnet werden.

Aufgabe 2:

Bestimmen Sie die Zentriertiefe Z für die Bohrungen Ø 10 und Ø 14 so, dass jeweils eine Senkung von 0,3 x 90° übrig bleibt. Geben Sie die Zentriertiefe im Werkstückkoordinatensystem einschließlich Vorzeichen an.

Ø 14:	D = 10,6	Z = -5,3	
Ø 10:	D = 14,6	Z = -7,3	

51

Fräserra	adiuskorr	ektur II			Übung 5
%412001			Programm für Werkstück in Bild 3		
N010	G17			Ebenenauswahl	
N020	G90			Absolutmaß	
N030	G54			Nullpunktverschiebung	
N040	G00	Z100		Rückzug zum Werkzeugwechsel	
N050	T01	M06		Werkzeugaufruf	
N060	F100	S1600	M03	Technologische Daten	
N070	G00	X20	Y-50	Zum Startpunkt	
N080	Z-22			Zustellen	
N090	G01	Z-25		Auf Tiefe	
N100	G42			Einschalten der FRK	
N110	X50			Zum ersten Bahnpunkt	
N120	X65			Nach K1	
N130	Y-11			Nach K2	
N					

Aufgabe 3:

Bestimmen Sie die Koordinaten des letzten Bahnpunkts und des Endpunkts sowie aller Konturpunkte. Zeichnen Sie in Bild 3 die Position des Fräsers im letzten Bahnpunkt und im Endpunkt ein. Vollenden Sie das Programm zur Bearbeitung der Innenkontur.

Lösung Seite 142, 145, 146

Randbedingungen bei der Anwendung der FRK

In der letzten Übung haben Sie die wichtigsten Randbedingungen kennen gelernt, die bei der Anwendung der Fräserradiuskorrektur eingehalten werden sollten. Diese gelten grundsätzlich alle auch bei Innenkonturen.

Besonders hingewiesen werden soll aber auf eine Bedingung, die bei Außenkonturen nur zuweilen, bei Innenkonturen aber fast immer von Bedeutung ist:

- Die Verrundungsradien der programmierten Kontur müssten stets größer als der Radiuswert des Fräsers sein.

Das ist eigentlich klar, denn mit einem Fräser von zum Beispiel Ø 20 kann man natürlich keinen Verrundungsradius von R6 erreichen. In der Praxis vergisst man das aber leicht und wundert sich dann, warum das Programm nicht läuft. Haben Sie das in Ihrem Programm berücksichtigt?

Aufgabe 4:

Wenn Ihnen ein Simulator oder Trainer zur Verfügung steht, sollten Sie jetzt Ihr Programm testen.

Sehen Sie sich einmal in aller Ruhe an, wohin in jedem Satz der Fräser verfahren wird.

135

