# Leseprobe



Dr.-Ing. Paul Christiani GmbH & Co. KG www.christiani.de



Inhaltsverzeichnis

# Inhaltsverzeichnis

| Kunsts  | Kunststoffe Seit                                        |      |
|---------|---------------------------------------------------------|------|
| 1       | Grundbegriffe                                           | . 1  |
| 1.1     | Definitionen, Allgemeines                               | . 1  |
| 1.2     | Einteilung der Kunststoffe                              | . 6  |
| 1.2.1   | Einteilung nach dem Vorkommen                           |      |
| 1.2.2   | Einteilung nach den Eigenschaften                       |      |
| 1.2.2.1 | Bindungsformen                                          | . 8  |
| 1.2.3   | Einteilung nach der Art der chemischen Bildungsreaktion |      |
| 1.3     | Aufbau und Eigenschaften der Kunststoffe                |      |
| 1.4     | Kunststoffzustandsformen                                | . 17 |
| 1.5     | Kunststoffbestimmung                                    | . 20 |
| 1.5.1   | Einfache Prüfung                                        | . 20 |
| 1.5.2   | Ermittlung des Kunststoffverhaltens durch Prüfverfahren | . 23 |
| 1.5.2.1 | Rheologische Prüfverfahren                              | . 23 |
| 1.5.2.2 | Mechanische Prüfverfahren                               | . 25 |
| 1.5.2.3 | Thermische Prüfverfahren                                | . 28 |
| 1.5.2.4 | Elektrische Prüfverfahren                               | . 29 |
| 1.5.2.5 | Optische Prüfverfahren                                  | . 29 |
| 1.5.2.6 | Oberflächeneigenschaften                                | . 30 |
| 1.5.2.7 | Alterungsprüfungen, Beständigkeitsprüfungen             | 30   |
| 2       | Häufig verwendete Thermoplaste                          | . 31 |
| 2.1     | Polyethen                                               | . 31 |
| 2.2     | Polypropen                                              | . 34 |
| 2.3     | Polyvinylchlorid                                        | . 36 |
| 2.3.1   | PVC-Arten                                               | . 36 |
| 2.3.2   | Weichmachung von PVC                                    | . 37 |
| 2.3.3   | PVC-U (Hart-PVC)                                        | . 38 |
| 2.3.4   | PVC-P (Weich-PVC)                                       |      |
| 2.4     | Styrolpolymerisate                                      | 40   |
| 2.4.1   | Polystyrol                                              | . 41 |
| 2.4.2   | Schlagfestes Polystyrol                                 | 43   |
| 2.4.3   | Styrol-Acrylnitril-Copolymerisat                        | 45   |
| 2.4.4   | Acrylnitril-Butadien-Styrol-Polymerisat                 | . 47 |
| 2.5     | Polymethylmethacrylat                                   | 49   |
| 2.6     | Fluorpolymerisate                                       | 51   |
| 2.6.1   | Polytetrafluorethylen                                   | . 51 |

Inhaltsverzeichnis

2.6.2

3.3

3.3.1

3.3.2

3.3.3

3.3.4

3.4

3.4.1

3.4.2

3.5

3.5.1

3.5.2

3.5.3

4

4.1 4.2

4.3

4.4

4.5 4.6

4.7



seit 1931

| 2.6.3                        | Tetrafluorethylen/Ethylen-Copolymerisat                                             |                            |
|------------------------------|-------------------------------------------------------------------------------------|----------------------------|
| 2.7                          | Polyacetale                                                                         | 56                         |
| 2.8                          | Polyamide                                                                           | 58                         |
| 2.9                          | Lineare Polyester                                                                   | 63                         |
| 2.9.1                        | Polycarbonat                                                                        | 63                         |
| 2.9.2                        | Polyalkylenterephtalate                                                             | 65                         |
| 2.9.2.1                      | Polyethylenterephthalat (PET)                                                       | 66                         |
| 2.9.2.2                      | Polybutylenterephthalat (PBT)                                                       | 67                         |
|                              |                                                                                     |                            |
| 3                            | Häufig verwendete Duroplaste und Elastomere                                         | 69                         |
| <b>3</b> 3.1                 | Häufig verwendete Duroplaste und Elastomere                                         |                            |
| -                            | ·                                                                                   | 69                         |
| 3.1                          | Phenol/Formaldehyd-Kunststoffe                                                      | 69<br>70<br>71             |
| 3.1<br>3.1.1                 | Phenol/Formaldehyd-Kunststoffe                                                      | 69<br>70<br>71             |
| 3.1<br>3.1.1<br>3.1.2        | Phenol/Formaldehyd-Kunststoffe                                                      | 69<br>70<br>71<br>74       |
| 3.1<br>3.1.1<br>3.1.2<br>3.2 | Phenol/Formaldehyd-Kunststoffe Phenoplastbildung Härtbare PF-Formmassen Aminoplaste | 69<br>70<br>71<br>74<br>75 |

UP-Reaktionsgießharze ......81

UP-Harz-Formstoffe 83

Epoxidharze 85

EP-Harz-Formstoffe 87

Kunststoff-Kurzzeichen ......95 



seit 1931

| ahal | tsver | zaiak | nnic |
|------|-------|-------|------|

| 5     | Kunststoff-Lieferformen                                  | 105 |
|-------|----------------------------------------------------------|-----|
| 5.1   | Kunststoff-Formmassen                                    | 105 |
| 5.2   | Schaumstoffe                                             | 105 |
| 5.3   | Anstrichstoffe                                           | 106 |
| 5.4   | Schichtpressstofferzeugnisse                             | 107 |
| 5.5   | Klebstoffe und Klebstoffverarbeitung                     | 108 |
| 5.6   | Reaktionsharze                                           | 109 |
| 5.7   | Lackierte Faserstoffe für die Elektrotechnik             | 110 |
| 5.8   | Isolierbänder, Isolierschläuche, Isolierfolien           | 111 |
| 5.9   | Isolierlacke und Isolierharzmassen                       | 111 |
| 6     | Kunststoffeigenschaften                                  | 113 |
| 6.1   | Mechanische Eigenschaften                                | 113 |
| 6.1.1 | Zugspannung, Zugfestigkeit                               | 113 |
| 6.1.2 | Formbeständigkeit in der Wärme                           | 116 |
| 6.1.3 | Zeitstandsfestigkeit, Dauerfestigkeit                    |     |
| 6.1.4 | Biegewechselfestigkeit                                   | 121 |
| 6.1.5 | Gleitreibungsverfahren                                   | 121 |
| 6.1.6 | Orientierung und Eigenspannungen                         | 122 |
| 6.2   | Thermische Eigenschaften                                 | 123 |
| 6.2.1 | Wärmeausdehnung                                          | 123 |
| 6.3   | Elektrische Eigenschaften                                | 125 |
| 6.3.1 | Dielektrische Eigenschaften                              | 125 |
| 6.3.2 | Widerstand gegen Kriechwegbildung                        | 126 |
| 6.3.3 | Durchschlagfestigkeit                                    | 127 |
| 6.4   | Sonstige Eigenschaften                                   | 127 |
| 6.4.1 | Durchlässigkeit für Gase und Wasserdampf                 | 127 |
| 6.4.2 | Definitionen und Formeln                                 | 127 |
| 6.4.3 | Spannungsrissbildung (Spannungskorrsion)                 | 129 |
| 6.4.4 | Wasseraufnahme                                           | 129 |
| 6.4.5 | Fließeigenschaften von Kunststofflösungen und -schmelzen | 129 |
| 6.4.6 | Viskosität und Molekülmasse                              | 131 |
| 6.4.7 | Eigenviskosität, K-Wert                                  | 132 |
| 6.5   | Chemikalienbeständigkeit der wichtigsten Kunststoffe     | 133 |
| 7     | Kunststoffdaten                                          | 137 |
| 7.1   | Duroplast-Formmassen                                     | 137 |
| 7.2   | Gießharzformstoffe                                       | 141 |
| 7.3   | Thermoplast-Formmassen                                   | 145 |



seit 1931

#### Inhaltsverzeichnis

| 8       | Kunststoff-Anwendungsstoffe                                    | 150 |
|---------|----------------------------------------------------------------|-----|
| 8.1     | Kunststoffe auf einen Blick                                    | 150 |
| 8.2     | Elastomere auf einen Blick                                     | 155 |
| 8.3     | Anwendung und Verarbeitung von Kunststoff-Formmassen           |     |
|         | und -Halbzeug                                                  | 156 |
| 9       | Kunststoffverarbeitung                                         | 161 |
| 9.1     | Niederdruckurformen mit Polyreaktion                           | 164 |
| 9.2     | Herstellung glasfaserverstärkter Reaktionsharzformstoffe (GFK) | 164 |
| 9.3     | Schäumverfahren                                                | 168 |
| 9.3.1   | Physikalisches Treibverfahren                                  | 168 |
| 9.3.2   | Chemisches Treibverfahren                                      | 168 |
| 9.4     | Kompressionsformen (Formpressen)                               | 169 |
| 9.4.1   | Pressen mit Presswerkzeug                                      | 169 |
| 9.4.2   | Extrudieren (Strangpressen)                                    | 170 |
| 9.4.3   | Extrusionsblasen                                               | 172 |
| 9.4.4   | Folienblasen                                                   | 172 |
| 9.4.5   | Injektionsformen                                               | 173 |
| 9.4.5.1 | Spritzgießen                                                   | 173 |
| 9.4.5.2 | Spritzprägen                                                   | 178 |
| 9.4.6   | Thermoplastschaumguss (TSG-Verfahren)                          | 179 |
| 9.5     | Kalandrieren                                                   | 179 |
| 9.6     | Tiefziehen                                                     | 180 |
| 9.7     | Reckverfahren                                                  | 181 |
| 9.8     | Fügen von Kunststoffen                                         | 182 |
| 9.8.1   | Kleben von Kunststoffen                                        | 183 |
| 9.8.1.1 | Vibrationskleben                                               | 186 |
| 9.8.2   | Schweißen                                                      | 186 |
| 9.8.2.1 |                                                                |     |
| 9.8.2.2 | Heizelementschweißen (HS-Schweißen)                            | 190 |
| 9.8.2.3 | Reibschweißen                                                  | 191 |
| 9.8.2.4 | Hochfrequenzschweißen (HF-Schweißen)                           | 192 |
| 9.8.2.5 | Ultraschallschweißen (US-Schweißen)                            | 193 |
|         | Infrarotschweißen (IR-Schweißen)                               |     |
| 9.8.2.7 | Laserschweißen                                                 | 195 |
| 9.9     | Beschichten von Kunststoffen                                   |     |
| 9.9.1   | Lackieren von Kunststoffen                                     | 197 |
| 9.9.2   | Galvanisieren von Kunststoffen                                 | 202 |
| 993     | Physikalische Reschichtung                                     | 209 |



seit 1931

| Inhal | tev/ | er7 | PI | ٦h | nis |
|-------|------|-----|----|----|-----|

| 10     | Kunststoffgestaltung                                      | . 213 |
|--------|-----------------------------------------------------------|-------|
| 10.1   | Kunststoffe als Konstruktionswerkstoffe                   | . 213 |
| 10.2   | Grundregeln für die Gestaltung von Kunststoffformteilen   | . 214 |
| 10.3   | Toleranzen für die Längenmaße von Kunststoffformteilen    | . 216 |
| 10.3.1 | Toleranzgruppen für Allgemeintoleranzen                   | . 221 |
| 10.3.2 | Toleranzgruppen für Maße mit direkt eingetragenen Abmaßen | . 221 |
| 11     | Kunststoffrecycling                                       | . 224 |
| 11.1   | Stoffliches Recycling                                     | . 224 |
| 11.1.1 | Trennen von Mischabfällen                                 | . 225 |
| 11.1.2 | Direktes Umschmelzen gemischter Kunststoffabfälle         | . 227 |
| 11.1.3 | Aufbereiten gemischter Kunststoffabfälle                  | . 228 |
| 11.1.4 | Granulieren                                               |       |
| 11.1.5 | Recycling am Beispiel PET                                 | . 233 |
| 11.2   | Chemisches Recycling                                      | . 235 |
| 11.2.1 | Hydrolyse und Alkoholyse                                  | . 235 |
| 11.2.2 | Pyrolyse                                                  | . 236 |
| 11.2.3 | Hydrieren                                                 | . 237 |
| 11.2.4 | Vergasen                                                  | . 237 |



Polyamide

**Elektrische Eigenschaften:** Günstiger Oberflächenwiderstand, gute Durchschlagund Kriechstromfestigkeit, Werte nehmen jedoch mit Temperatur und Wassergehalt ab. Hohe dielektrische Verluste infolge starker Polarität, daher für Isolierungen im HF-Bereich nicht geeignet.

**Thermische Eigenschaften:** Dauergebrauchstemperaturbereich je nach PA-Typ 70 °C bis 120 °C kurzzeitig bis 140 °C. Meist kochfest und sterilisierbar. Polyamide brennen und tropfen ab. Zersetzung findet oberhalb von 300 °C statt.

#### Kristallitschmelzbereiche:

| Polyamid | Kristallitschmelzbereich |
|----------|--------------------------|
| PA6      | 215 bis 225 °C           |
| PA46     | 295 °C                   |
| PA66     | 250 bis 265 °C           |
| PA610    | 210 bis 255 °C           |
| PA11     | 180 bis 190 °C           |
| PA12     | 175 bis 185 °C           |

Chemische Eigenschaften: Beständig gegen Öle, Fette, Benzin, Benzol, schwache Laugen, Ester, Ketone, sowie viele chlorierte Kohlenwasserstoffe. Unbeständig gegen Säuren und starke Laugen. Gesundheitlich unbedenklich, sofern keine längere Hitzeeinwirkung besteht. Geringe Neigung zu Spannungsrissbildung.

Die Wasseraufnahme nimmt mit zunehmender Kristallinität ab; sie erreicht nach viermonatiger Lagerung im Normalklima (23 °C, 50 % rel. Luftfeuchtigkeit) je nach Kristallinität folgende Werte:

#### Wasseraufnahme:

| D 1      | 144           |
|----------|---------------|
| Polyamid | Wassergehalt  |
| PA6      | 2,8 bis 3,2 % |
| PA46     | 3,5 %         |
| PA66     | 2,5 bis 2,7 % |
| PA610    | 1,2 bis 1,4 % |
| PA11     | 0,8 bis 1,2 % |
| PA12     | 0,7 bis 1,1 % |
| PA6-3-T  | 3,0 %         |

Die Einstellung eines bestimmten Wassergehalts von Formteilen, Konditionieren genannt, erfolgt durch Lagerung in Wasser.

© by Dr.-Ing. Paul Christiani GmbH & Co. KG



Kunststoff-Kurzzeichen

# 4 Kunststoff-Kurzzeichen

Die Kurzzeichen der Kunststoffe sind genormt nach DIN EN ISO 1043-1.

## 4.1 Kurzzeichen für chemisch modifizierte polymere Naturstoffe

| Kurzzeichen | Bezeichnung             |
|-------------|-------------------------|
| CA          | Celluloseacetat         |
| CAB         | Celluloseacetobutyrat   |
| CAP         | Celluloseacetopropionat |
| CF          | Kresolformaldehyd       |
| CMC         | Carboxymethylcellulose  |
| CN          | Cellulosenitrat         |
| CP          | Cellulosepropionat      |
| CSF         | Casein-Formaldehyd      |
| CTA         | Cellulosetriacetat      |
| EC          | Ethylcellulose          |
| EP          | Epoxid                  |
| MC          | Methylcellulose         |
| MF          | Melamin-Formaldehyd     |
| VF          | Vulkanfiber             |

## 4.2 Kurzzeichen für Homopolymere

Der Buchstabe P für Poly gilt nur für Homopolymere. Für Copolymere wird er im Normalfall nicht verwendet.

| Kurzzeichen | Bezeichnung                                                          |
|-------------|----------------------------------------------------------------------|
| PA          | Polyamid (allgemein)                                                 |
| PA6         | Polykondensat aus ε-Caprolactam (ε-Aminocapronsäure)                 |
| PA46        | Polykondensat aus 1.4 Diaminobutan und Adipinsäure                   |
| PA66        | Polykondensat aus Hexamethylendiamin und Adipinsäure                 |
| PA69        | Polykondensat aus Hexamethylendiamin und Azelainsäure                |
| PA610       | Polykondensat auf Hexamethylendiamin und Sebacinsäure                |
| PA612       | Polykondensat aus Hexamethylen und Dodecandisäure                    |
| PA6-3-T     | Polykondensat aus Trimethylhexamethylendiamin und<br>Terephthalsäure |
| PA11        | Polykondensat aus 11-Aminoundecansäure                               |
| PAI         | Polyamidimid Polykondensat aus Imidketten mit aromatischen Diaminen  |
| PAN         | Polyacrylnitril                                                      |
| PB          | Polybuten-1                                                          |
| PBI         | Polybenzimidazol                                                     |

© by Dr.-Ing. Paul Christiani GmbH & Co. KG



Sell 1931

#### Beschichten von Kunststoffen



Bild 125: Türgriff für ein Fahrzeug aus ABS in den drei Beschichtungsstufen verkupfert, vernickelt und verchromt (von unten nach oben) (Bild: Atotech)

Während die klassische Verfahrenstechnik durch Aufrauen der Oberfläche in breiterem Umfang nur bei den Kunststoffen ABS, ABS/PC (bis ca. 45 % PC) und Polyamid (PA) zum Einsatz kam, wird die Direktmetallisierung auch bei Polyetherimid (PEI), Flüssig-Kristall-Polymeren (LCP), Polyphenylensulfid (PPS), Nylon, Polyoxymethylen (POM) oder Polybutadienterephthalat (PBT) angewandt. Hauptabnehmer von metallisiertem Kunststoff (vorwiegend ABS) ist die Automobilindustrie. Daneben werden aber auch für Haushaltsgeräte, Geräte für die Elektro- und Elektronikindustrie oder den Bereich Kosmetik (z.B. Verschlusskappen) große Mengen an galvanisiertem Kunststoff verwendet. Die Palette an möglichen Kunststoffen hat sich inzwischen neben den aufgeführten auf die nachfolgend genannten erweitert, wobei sich allerdings der Aufwand zur Aktivierung der Oberfläche deutlich unterscheiden kann: Polypropylen (PP), Polyetheretherketon (PEEK), Polysulfon (PS), Polyethersulfon (PES), Polytetrafluorethylen (PTFE), Polyvinylchlorid (PVC), Polyethylen (PE), Polycarbonat (PC), Polymethylmethacrylat (PMMA), Polyurethan (PUR), Polyarylamid.

Vor allem für die Automobilindustrie werden heute zahlreiche Teile (Bild 126) in großen Galvanikanlagen und sehr hohen Stückzahlen beschichtet (Bild 127 bis 128). Dabei kommt im Automobilbereich vor allem Kunststoff auf Basis von ABS wegen der guten mechanischen Eigenschaften und der guten Beschichtbarkeit zum Einsatz.





Bild 126: Zierteile wie Kühlergrills oder Emblems erhalten durch die Metallisierung ein Aufwertung (Bilder: Atotech)

© by Dr.-Ing. Paul Christiani GmbH & Co. KG