Leseprobe

Technisches Institut für Aus- und Weiterbildung

Michael Giese

Formelsammlung

Chemie und Physik

Dr.-Ing. Paul Christiani GmbH & Co. KG www.christiani.de

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

Prof. Dr. Michael Giese

Formelsammlung

Chemie und Physik

Chemielaboranten
Chemikanten
Chemisch-technische Assistenten

Michael Giese | Formelsammlung Chemie und Physik

2. Auflage 2017

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

Bestell-Nr. 74499 ISBN 978-3-95863-237-0		
2., überarbeitete Auflage 2017		
© 2006 by DrIng. Paul Christiani GmbH & Co. KG, Konstanz		

Alle Rechte, einschließlich der Fotokopie, Verfilmung, Wiedergabe durch Bild- und Tonträger jeder Art und des auszugsweisen Nachdrucks, vorbehalten. Nach dem Urheberrechtsgesetz ist die Vervielfältigung urheberrechtlich geschützter Werke oder von Teilen daraus auch für Zwecke von Unterricht und Ausbildung nicht gestattet, außer nach Einwilligung des Verlags und ggf. gegen Zahlung einer Gebühr für die Nutzung fremden geistigen Eigentums. Nach dem Urheberrechtsgesetz wird mit Freiheitsstrafe bis zu einem Jahr oder mit Geldstrafe bestraft, "wer in anderen als in den gesetzlich zugelassenen Fällen ohne Einwilligung des Berechtigten ein Werk vervielfältigt ..."

seit 1931

Inhaltsverzeichnis

		Seite
1	Allgemeines	7
	Das griechische Alphabet	
	Präfixe	
	Wichtige Konstanten und Festlegungen	
	SI-Basisgrößen	8
	Wichtige abgeleitete physikalische und chemische Größen	8
2	Mathematische Grundlagen	10
	Umrechnung von Größen	
3	Geometrie	13
4	Allgemeine physikalische Formeln	4,
4	Dichte	
	Viskosität	
	Potenzielle und kinetische Energie	
	Temperatur	
	Ausdehnung	16
	Dichten wichtiger Stoffe	17
	Viskosität von Flüssigkeiten	17
5	Mechanik	-11
3	Kräfte	
	Drehmoment	
	Hebel	
	Schiefe Ebene	
	Zug, Druck, Dehnung, Biegung, Torsion und Scherbeanspruchung	
	Mechanische Arbeit, Leistung und Wirkungsgrad	
	Einfache Maschinen	
	Geschwindigkeit und Beschleunigung	
	Bewegung	2
	Reibung	24
	Elastischer und unelastischer Stoß	
	Periodendauer, Schwingungsdauer und Frequenz	
	Kreisfrequenz	
	Pendel	
	Ausbreitungsgeschwindigkeit	
	Doppler-Effekt	
	Reibungszahlen	
	Schallgeschwindigkeiten	
6	Hydrostatik und Hydrodynamik	2
	Definition des Drucks	
	Schweredruck	
	Hydraulische Anlage	
	Auftrieb	
	Eintauchtiefe	
	Volumenstrom	
	Strömung	
7	Gasgesetze	21
8	Thermodynamik	30
•	0., 1., 2. Hauptsatz der Thermodynamik	
	Molare Reaktionsenergie	
	Molare Reaktionsenthalpie, molare Lösungsenthalpie und molare freie Enthalpie	
	Born-Haber-Kreisprozess	
	Thermodynamischer Wirkungsgrad	
	Wärmemenge, Wärmeübertragung und Wärmekapazität	
	Dampfdruckerniedrigung	
	Clausius-Clapeyron-Gleichung	
	Chemisches Potenzial	
	Thermodynamische Daten verschiedener Stoffe	34
	Molare Gitterenthalpie	
	Molare Hydratationsenthalpie	
	Kryoskopische und ebullioskopische Konstanten	3

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

seit 1931

Inhaltsverzeichnis

	S	eite
	Elektrizitätslehre und Magnetismus	-
9		
	Definition der Ladung	
	Coulomb'sches Gesetz	
	Definition der elektrischen Spannung	
	Ohm'sches Gesetz	
	Elektrischer Widerstand Knotenpunktregel	
	Reihenschaltung von Stromquellen	
	Wheatstone'sche Brückenschaltung	
	Elektrische Leistung und Arbeit	
	Kapazität	
	Kondensatoren	
	Permeabilität	
	Magnetisches Feld	
	Induktion	
	Hall-Spannung	
	Spezifische elektrische Widerstände	
	Dipolmomente	
	Relative Permittivität	
	Relative Permeabilität	
	Austrittsarbeit der Elektronen aus reinen Metalloberflächen	
	Hall-Konstanten	. 42
10	Optik	. 43
	Lichtbrechung	. 43
	Reflexion	. 43
	Polarimetrie	. 43
	Frequenz und Wellenzahl	. 43
	Bragg-Gesetz	. 43
	Elektromagnetisches Spektrum	. 45
	Lichtgeschwindigkeiten	
	Brechzahlen	. 45
11	Quantenphysik	46
• •	Lichtquant	
	Energiebilanz beim Fotoeffekt	
	Auslöseenergie	
	Compton-Effekt	
	De-Broglie-Wellenlänge	
	Unschärfe-Relationen	
	Bohr'sche Frequenzbeziehung	
	Moseley-Gesetz	
	Spektrallinie für das Wasserstoffatom	
12	Kernphysik und -chemie	
13	Grundlagen der Chemie: Allgemeines	
	Stoffmenge	
	Stöchiometrisches Rechnen	
	Stoffmengenkonzentration	
	Anteile (Stoffmenge, Masse, etc.)	
	Konzentration (Masse, Volumen)	
	Molalität	
	Mischungskreuz	
	Gravimetrischer Faktor	
	Massenwirkungsgesetz	
	Eigenschaften der chemischen Elemente	. 52

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

Inhaltsverzeichnis

	s	Seite
14	Chemie der Lösungen	54
	Aktivität	54
	Löslichkeitsprodukt	54
	pH-Wert	55
	Dissoziationsgrad	56
	Born'sche Gleichung	56
	Diffusion	56
	Massenanteil und Dichte von sauren und alkalischen Lösungen	57
	Löslichkeitsprodukte	57
	Löslichkeit von Gasen	58
	Komplexzerfallskonstanten	58
	Säure- und Basenkonstanten	59
	Indikatoren	59
45	Elektrochemie	60
13	Elektrische Leitfähigkeit.	
	Elektrochemisches Potenzial	
	Faraday'sche Gesetze	
	Elektrochemische Spannungsreihe	
	Elektrochemische Spannungsfeine	62
16	Reaktionskinetik	63
17	Grundlagen der Statistik für die analytische Chemie	65
18	Periodensystem der Elemente	. 66
Stic	chwortverzeichnis	70

seit 1931

14 Chemie der Lösungen

14 Chemie der Lösungen

14 Chemie der Lösungen Skizze/Bemerkung	Formel-	Größe/Bedeutung	Einheit	Formel
	zeichen	, and the second		Formei
Aktivität	a	Aktivität	mol · L ^{−1}	$a = f_a \cdot c$
	f _a	Aktivitätskoeffizient Konzentration	mol·L ⁻¹	
	C	Konzentration	moi · L	
mittlerer Aktivitätskoeffizient	γ	Aktivitätskoeffizient	-	$\gamma = (\gamma_+ \cdot \gamma)^{\frac{1}{2}}$
	γ,	Aktivitätskoeffizient Kation	-	7 4 7 -7
	γ_	Aktivitätskoeffizient	_	
		Anion		
Debye-Hückel-Grenzgesetz	γ	Aktivitätskoeffizient	_	
	Z ₊	Ionenladung Kation	_	$\lg \gamma_{\pm} = -[z_{+}z_{-}] \cdot A \cdot I^{\frac{1}{2}}$
	z_	Ionenladung Anion	-	
	A	Parameter, der von der Dielektrizitäts-	(L · mol ⁻¹) ^{1/2}	
		konstante des Löse-		
		mittels abhängt		
	I	Ionenstärke	mol · L ^{−1}	
Löslichkeitsprodukt	$\kappa_{\scriptscriptstyle L}$	Löslichkeitsprodukt	mol ⁿ · L ^{−n}	Für das Gleichgewicht
	a, b	stöchiometrische	-	$M_{o}L_{h} \rightleftharpoons aM^{m+} + bL^{n-}$ gilt:
	A #M+ / N-	Faktoren		$K_1(M_aL_b) = c^a(M^{m+}) \cdot c^b(L^{n-})$
Mm+ / n-	M ^{m+} , L ⁿ⁻	Gelöste lonen der Verbindung M _a L _b	-	KL(WaLb) = C (W) C (L)
aq E aq	с	molare Konzentration	mol · L ^{−1}	
M_aL_b (S)				
Löslichkeit	L	Löslichkeit	mol ⋅ L ⁻¹	
LOSIICHKEIT	K _L	Löslichkeitsprodukt	mol ⁿ · L ⁻ⁿ	$L(M_aN_b) = a+b\sqrt{\frac{K_L(M_aN_b)}{a^a \cdot b^b}}$
	a, b	stöchiometr. Faktoren	-	V a ⋅ D
Vempleyzerfellekenetente	V	Komplexdissoziations-	mol ⁿ · L ^{−n}	
Komplexzerfallskonstante	K _D	konstante	moir	Für das Gleichgewicht
	K _{St}	Komplexstabilitäts-	mol ⁿ · L ^{−n}	$\left[ML_{x} \right]^{n+} \Rightarrow M^{n+} + x : L \text{ gilt:}$
		konstante		Komplex Zentralteilchen Ligand
	С	molare Konzentration	mol · L ^{−1}	$K_{D} = \frac{c(M) \cdot c^{n}(L)}{c(ML_{-})}$
				, n/
				$K_{\rm D} = \frac{1}{K_{\rm St}}$
				$pK_D = -\log K_D = \log K_{St}$
Vortoilung zwiechen zwei	К	Nornet'scher	_	[]
Verteilung zwischen zwei Flüssigkeiten	^	Nernst'scher Verteilungskoeffizient	-	$K = \frac{[A]_1}{[A]_2}$
(Nernst'sches Verteilungs-				[^]2
gesetz)		stoff A mit zwei flüssigen Pl o wird er sich in diesen in u		
vor dem nach dem 1. Ausschütteln		em Maße lösen und verteile		
Д., Д				
[A] ₀ Ether + [A] ₁				
Farbstoff Wasser [A] ₂				
₩				
ν ν 				

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

seit 1931

14 Chemie der Lösungen

Skizze/Bemerkung	Formel- zeichen	Größe/Bedeutung	Einheit	Formel
Definition des pH-Werts		sozierten Säure definiert. [hmus der Konzentration der im gilt dementsprechend für Basen.
		oH- und pOH-Wert gilt die nalbedingungen bedeutet d		
Ionenprodukt des Wassers	K _w	Ionenprodukt des Wassers	mol ² · L ^{−2}	$K_{\rm w} = [H_3O^+] \cdot [OH^-] = 10^{-14} \text{ mol}^2/L^2$
				$pK_W = pH + pOH = 14$
Säurestärke	pK _S K _S	Säurestärke Säurekonstante	− mol · L ⁻¹	$pK_{S} = -\lg K_{S} = -\lg \frac{\left[H_{3}O^{+}\right] \cdot \left[S^{-}\right]}{\left[HS\right]}$
Basenstärke	pK _B	Basenstärke Basenkonstante	- mol·L ⁻¹	$pK_{B} = -\lg K_{B} = -\lg \frac{\left[OH^{-}\right] \cdot \left[HB^{+}\right]}{\left[B\right]}$
	K _B	Daserikoristarite	IIIOI · L	[B]
Berechnung des pH-Werts	c(H ₃ O ⁺) K _S	Konzentr. der Protonen Säurekonstante	mol · L ⁻¹	
	c ₀ (HA)	Ausgangskonzentration der Säure (HA)		
	K _W	Ionenprod. des Wassers	mol ² · L ^{−2}	
	_		zum Berechnen des pH-Werts	
	Stark	K _S > 10		$0 = c_0(HA)$ $\log c_0(HA)$
	Mittelstark	10-10 ⁻⁴	c(H ₃ O ⁺)	$) = -\frac{K_{S}}{2} + \sqrt{\left(\frac{K_{S}}{2}\right)^{2} + K_{S}c_{0}(HA)}$
	Schwach	10 ⁻⁴ –10 ⁻¹¹		$(ho K_{S} - \log c_{0} (HA))$
	Sehr schw	ach 10 ⁻¹¹ -10 ⁻¹⁵	c(H ₃ O ⁺)	$)=\sqrt{K_{W}+K_{S}c_{0}(HA)}$
pH-Wert von Pufferlösungen (Henderson-Hasselbalch-	c(A ⁻)	Stoffmengenkonzentra- tion des Säureanions	mol · L ^{−1}	$pH = pK_S + \lg \frac{c(A^-)}{c(HA)}$
Gleichung)	c(HA)	Ausgangskonzentration der Säure (HA)	mol ⋅ L ⁻¹	
Vorgehensweise bei der Berechn	ung	•	'	•
Zugabe einer	Neutralis			
starken Säure	X- + H ₃ O+ →	1		
Puffer mit HX und X-	vollständige angenor			Berechnung von [H*] aus K_s ,
Tix dila X	Neutralis	sation		[HX] und [X-]
_ ,		V 11 0		$pH = pK_s + lg \frac{[X^-]}{[HX]}$
Zugabe einer starken Base	HX + OH⁻ →	e Berechnung		thgewichtsberechnung

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

seit 1931

56 14 Chemie der Lösungen

Skizze/Bemerkung	Formel- zeichen	Größe/Bedeutung	Einheit	Formel
Dissoziationsgrad $\alpha_{\rm S}$		Protolysegrad der Säure	-	c(H ₃ O ⁺)
	c(H ₃ O ⁺)	Stoffmengenkonzentrati- on der Protonen	mol ⋅ L ⁻¹	$\alpha_{\rm S} = \frac{c({\rm H}_3{\rm O}^+)}{c_0({\rm HA})}$
	c ₀ (HA)	Ausgangskonzentration der Säure (HA)	mol ⋅ L ⁻¹	$\alpha_{B} = \frac{c(OH^{-})}{c_{0}(B)}$
	α_{B}	Protolysegrad der Base	-	
	c(OH⁻)	Stoffmengenkonzentrati- on der Hydroxid-Ionen	mol ⋅ L ⁻¹	
	c ₀ (B)	Ausgangskonzentration der Base (B)	mol ⋅ L ⁻¹	
Ostwald'sches Verdünnungs-	Ks	Säurekonstante	mol ⋅ L ⁻¹	für eine Säure:
gesetz	$\alpha_{\mathtt{S}}$	Protolysegrad der Säure	-	$K_{\rm S} = \frac{\alpha_{\rm S}^2}{1 - \alpha_{\rm S}} \cdot c_0 \text{(HA)}$
	c ₀ (HA)	Ausgangkonzentration der Säure (HA)	mol ⋅ L ⁻¹	$1-\alpha_S$ für eine Base:
	K _B	Basenkonstante	mol ⋅ L ⁻¹	$K_B = \frac{\alpha_B^2}{1 - \alpha_D} \cdot c_0(B)$
	α_{B}	Protolysegrad der Base	_	$n_{\rm B} = \frac{1 - \alpha_{\rm B}}{1 - \alpha_{\rm B}} \cdot c_0(B)$
	c ₀ (B)	Ausgangskonzentration der Base (B)	mol · L ^{−1}	
Born'sche Gleichung	$\Delta_{Solv}G_0$	freie Solvationsenthalpie	kJ ⋅ mol ⁻¹	$\Delta_{\text{Solv}}G_0 = -\frac{z^2 \cdot e^2 \cdot N_A}{8\pi \cdot \varepsilon_0 \cdot r} \left(1 - \frac{1}{\varepsilon} \right)$
	z	Ionenladung		$\Delta_{\text{Solv}}G_0 = -\frac{8\pi \cdot \varepsilon_0 \cdot r}{8\pi \cdot \varepsilon_0 \cdot r} \left(1 - \frac{\varepsilon}{\varepsilon}\right)$
	е	Elementarladung	С	
	N _A	Avogadro-Konstante	mol ⁻¹	
	ε_0	elektrische Feld- konstante	F⋅m ⁻¹	
	r	Radius	m	
	ε	Permittivitätszahl	-	
Diffusionspotenzial	E _D	Diffusionspotenzial	V	$E_{D} = \frac{R \cdot T}{z \cdot F} \cdot \ln \frac{c(\text{lon})_{1}}{c(\text{lon})_{2}}$
	R	universelle Gaskonstante	J · K ^{−1} · mol ^{−1}	$L_D = \overline{z \cdot F} \cdot \overline{c(lon)_2}$
	Т	Temperatur	К	
	z	Wertigkeit der Ionen	-	
	F	Faraday-Konstante	C · mol ^{−1}	
	c(lon) ₁	Ionenkonzentration der Lösung 1	mol ⋅ L ⁻¹	
	c(Ion) ₂	lonenkonzentration der Lösung 2	mol ⋅ L ⁻¹	
Osmose	P _{Osmose}	osmotischer Druck	Pa	$p_{Osmose} = z \cdot [A] \cdot R \cdot T$
(Van't Hoff'sches Gesetz)	Z	Anzahl Teilchen, in die	_	
$ ho_{ ext{Osmose}}$		Stoff A in Wasser disso- ziiert (wichtig bei Salzen)		
Δh	R	universelle Gaskonstante	J · K ⁻¹ · mol ⁻¹	
Wasser verdünnte Lösung	Τ	Temperatur	К	

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

seit 1931

14 Chemie der Lösungen

57

Lösung		verdünnte Lösun gesättigt bei 20°		ko	nzentrierte Lösu	ng
	Massenanteil in %	Dichte bei 20 °C in g · cm ⁻³	Stoffmengen- konzentration in mol·L ⁻¹	Massenanteil in %	Dichte bei 20 °C in g · cm ⁻³	Stoffmengen- konzentration in mol·L ⁻¹
Salzsäure	7	1,033	2	37	1,18	12
Schwefelsäure	9	1,059	1	96	1,84	17,97
Salpetersäure	12	1,066	2	65	1,39	14,35
Phosphorsäure	10	1,05	1,1	85	1,69	14,65
Essigsäure	12	1,015	2	98	1,05	17,22
Natronlauge	8	1,087	2,2	32	1,35	10,79
Kalilauge	11	1,1	2,2	27	1,26	6,12
Kalkwasser	0,12*	1,001*	0,017*	-	-	-
Barytwasser	1,8	1,04*	0,11	-	-	-
Ammoniaklösung	3	0,987	1,7	25	0,91	13,35

Löslichkeitsprodukt								
Name des Stoffes	Formel	mol ⁿ /L ⁿ	pK∟					
Aluminiumhydroxid	AI(OH) ₃	1,0 · 10 ⁻³³	33,0					
Bariumcarbonat	BaCO ₃	8,1 · 10 ⁻⁹	8,1					
Bariumhydroxid	Ba(OH) ₂	4,3 · 10 ⁻³	2,4					
Bariumphosphat	$Ba_3(PO_4)_2$	6,0 · 10 ⁻³⁸	37,2					
Bariumsulfat	BaSO ₄	1,0 · 10 ⁻¹⁰	10,0					
Bismut(III)-sulfid	Bi ₂ S ₃	1,6 · 10 ⁻⁷²	71,8					
Blei(II)-carbonat	PbCO ₃	3,3 · 10 ⁻¹⁴	13,5					
Blei(II)-chlorid	PbCl ₂	2,0 · 10 ⁻⁵	4,7					
Bleihydroxid	Pb(OH) ₂	2,8 · 10 ⁻¹⁶	15,55					
Blei(II)-iodid	Pbl ₂	8,7 · 10 ⁻⁹	8,1					
Blei(II)-sulfid	PbS	3,4 · 10 ⁻²⁸	27,5					
Blei(II)-sulfat	PbSO ₄	1,5 · 10 ⁻⁸	7,8					
Cadmiumcarbonat	CdCO ₃	2,5 · 10 ⁻¹⁴	13,6					
Cadmiumhydroxid	Cd(OH) ₂	1,2 · 10 ⁻¹⁴	13,9					
Cadmiumsulfid	CdS	1,0 · 10 ⁻²⁹	29,0					
Calciumcarbonat	CaCO ₂	4,8 · 10 ⁻⁹	8,3					
Calciumhydroxid	Ca(OH) ₂	5,5 · 10 ⁻⁶	5,3					
Calciumoxalat	Ca(COO)	2,6 · 10 ⁻⁹	8,6					
Calciumphosphat	Ca ₃ (PO ₄) ₂	1,0 · 10 ⁻²⁵	25,0					
Calciumsulfat	CaSO ₄	6,1 · 10 ⁻⁵	4,2					
Eisen(II)-hydroxid	Fe(OH) ₂	4,8 · 10 ⁻¹⁶	15,3					
Eisen(III)-hydroxid	Fe(OH) ₃	3,8 · 10 ⁻³⁸	37,4					
Eisen(II)-phosphat	Fe ₃ (PO ₄) ₂	1,0 · 10 ⁻³⁶	36,0					
Eisen(III)-phosphat	FePO ₄	4,0 · 10 ⁻²⁷	26,4					
Eisen(II)-sulfid	FeS	5,0 · 10 ⁻¹⁸	17,3					
Kupfer(I)-chlorid	CuCl	1,0 · 10 ⁻⁶	6,0					
Kupfer(II)-sulfid	CuS	8,0 · 10 ⁻⁴⁵	44,1					
Magnesiumcarbonat	MgCO ₃	2,6 · 10 ⁻⁵	4,6					
Magnesiumhydroxid	Mg(OH) ₂	2,6 · 10 ⁻¹²	11,6					
Magnesiumphosphat	Mg ₃ (PO ₄) ₂	6,0 · 10 ⁻²³	22,2					
Manganhydroxid	Mn(OH) ₂	4,0 · 10 ⁻¹⁴	13,4					
Nickel(II)-hydroxid	Ni(OH) ₂	1,6 · 10 ⁻¹⁴	13,8					
Nickelsulfid	NiS	1,0 · 10 ⁻²⁶	26,0					
Quecksilber(I)-chlorid	HgCl	2,0 · 10 ⁻¹⁸	17,7					
Quecksilber(II)-sulfid	HqS	1,0 · 10 ⁻⁵²	52,0					

Artikelnr.: 74499 | ISBN 978-3-95863-237-0

seit 1931

Stichwortverzeichnis

70

Abhängigkeit des Widerstands von der Temperatur 37 Absoluter Nullpunkt 7 Addieren von Kräften 18 Adsorption an Oberflächen 29 Adsorptionsisotherme 29 Aktivität 54

Aktivität eines Radionuklids 48 Änderung der inneren Energie 30 Äquivalentdosis 48

Arbeit 20f., 38

Archimedisches Prinzip 27 Arithmetischer Mittelwert 65 Arrhenius-Gleichung 63 Assoziativaesetz 10 Atomare Masseneinheit 7, 48 Auflösen von Klammern 10

Auftrieb 27 Ausbreitungsgeschwindigkeit einer

Welle 25 Auslöseenergie 46 Austrittsarbeit 42 Avogadro-Konstante 7 Avogadrozahl 7

R

Basenkonstante 59 Beleuchtungsstärke 9 Berechnung des pH-Werts 55 Beschleunigung 8, 22 Bewegung 22

- gleichförmig 22

- gleichförmig beschleunigt 22 Biegung 20

Binomische Formeln 10 Bohr'sche Frequenzbeziehung 47 Boltzmann-Konstante 7 Born'sche Gleichung 56

Born-Haber-Kreisprozess 32 Bragg-Gesetz 43 Brechungsgesetz 43 Brechzahl 43

Brechzahlen von verschiedenen Medien 45

Brüche 10 Brückenschaltung 38

C

Carnot-Prozess 32 Chemie der Lösungen 54ff. Clapeyron-Gleichung 33 Clausius-Clapeyron-Gleichung 33 Compton-Effekt 46 Coulomb'sches Gesetz 36

Dampfdruckerniedrigung 33 Debye-Hückel-Grenzgesetz 54 De-Broglie-Wellenlänge 46 Dehnung 20

Dichte 9, 16

Dichten: Feste Stoffe 17

Dichten: Flüssigkeiten 17 Dichten: Gase 17

Diffusionspotenzial 56 Dipolmomente 42 Dissoziationsgrad 56 Distributivgesetz 10 Doppler-Effekt 25

Dosis 9 Drehmoment 19 Dreieck 13 Druck 8, 19, 27

Druck-Volumen-Gesetz 29

Fbener Winkel 8 Ebullioskopische Konstanten 35 Eigenschaften der chemischen

Elemente 52 Finfache Maschinen 21

- Faktorenflaschenzug 22

- Feste Rolle 21 - Lose Rolle 22

- Winde 22

Einseitiger Hebel 19 Eintauchtiefe 27 Flastischer Stoß 24 Elektrische Arbeit 38 Elektrische Feldstärke 9, 36 Elektrische Kapazität 9 Elektrische Ladung 9, 36

Elektrische Leistung 38 Elektrische Leitfähigkeit 60 Elektrische Spannung 8, 36 Flektrischer Leitwert 9

Elektrischer Widerstand 9, 36f. Elektrochemie 60ff. Elektrochemische Spannungs-

reihe 62

Elektromagnetisches Spektrum 45 Elementarladung 7 Ellipse 14

Energie 8, 16 Energiebilanz beim Fotoeffekt 46

Energiedosis 48 Energie-Zeit-Unschärfe-Relation 47

Erdbeschleunigung 7 Erster Hauptsatz der Thermo-

dvnamik 30

Faktorenflaschenzug 22 Fadennendel 25 Faraday'sche Gesetze 61 Faraday'sche Konstante 7 Farbumschläge von Indikatoren 59 Federpendel 25 Feste Rolle 21 Fläche 9

Flächenausdehnung 17 Fliehkraft 23 Fotoeffekt 46

Freier Fall 23 Frequenz 8 25 43

Galvanische Zelle 60f. Gasgesetze 28ff. Gauß-Verteilung 65 Geometrie 13ff Gesamtwirkungsgrad 21 Geschwindigkeit 8, 22 Geschwindigkeit von Reaktionen 63f.

Gesetz von Amontons 28

Gesetz von Boyle und Mariotte 28 Gesetz von Gay-Lussac 28 Gewichtskraft 18 Gitterenthalpie 32 Gleichgewichtskonstante 63 Gravimetrischer Faktor 51 Gravitationskonstante 7

Gravitationskraft 18 Grenzwinkel der Totalreflexion 43 Griechische Zahlwörter 53 Griechisches Alphabet 7

Grundlagen der Statistik 65

Halbwertszeit 49 Hall-Konstanten 42 Hall-Spannung 41 Hauptsätze der Thermodynamik 30

Hebel 19 Heisenberg'sche Unschärfe 47

Henderson-Hasselbalch-Gleichung 55 Hess, Satz von 31 Hooke'sches Gesetz 25 Hydratisierung von Ionen 31

Hydraulische Anlage 27 Hydrostatik und Hydrodynamik 27ff.

Ideale Gasgleichung 28 Impuls 9 Indikatoren 59 Induktion 41 Induktion der Bewegung 41

Induktivität 9 Induktivität einer Spule 41

Innere Energie des idealen Gases 29

Ionenbeweglichkeit 60 Ionendosis 48

Ionenprodukt des Wassers 7, 55 Ionenstärke 60 Isobare Zustandsänderung 28

Isochore Zustandsänderung 28 Isotherme Zustandsänderung 28

Kalorimetrische Grundgleichung 31 Kapazität 38 Kegel 15 Kernbindungsenergie 48 Kernphysik und -chemie 48f. Kinetische Energie 16

Knotenpunktregel 37 Kohlrausch'es Quadratwurzelgesetz 60

Kommutativgesetz 10