Leseprobe

Dr.-Ing. Paul Christiani GmbH & Co. KG www.christiani.de

Artikelnr.: 100131 | ISBN 978-3-87125-370-6

			Seite
nhaltsverzeichnis	1.	Allgemeine Hinweise	5
	2.	Allgemeine Zeichen	6
	3.	Allgemeine Grundlagen	_
		Dreisatzrechnung	7 8
		Prozentrechnung, Zinsrechnung	8
		Umstellen von Gleichungen	9
	4.	Geometrie	
		Teilung von Längen	10
		Längen am rechtwinkligen Dreieck (Pythagoras)	10
		Quadrat, Rechteck	10
		Parallelogramm, Raute	11
		Trapez	11
		Dreieck	11
			12
		Kreis, Kreisring, Kreisbogen Längen und Winkel im rechtwinkligen Dreieck (Winkelfunktionen)	12
		cangon one transcript protock (transcription)	
	5.	Stereometrie	
		Würfel, Prisma, Pyramide	13
		Zylinder	13
		Hohlzylinder	14
		Kegel, Kugel	14
	6.	Physikalische Berechnungen	
		Masse, Dichte	15
		Gleichförmige, geradlinige Bewegung	15
		Gleichförmige Drehbewegung	15
		Grundgesetz der Dynamik	15
		Gewichtskraft	15
		Zusammensetzung von Kräften, Kräftezerlegung	16
		Kraftmoment (Drehmoment)	16
		Hebel	16/17
		Mechanische Arbeit	17
		Potentielle Energie	17 17
		Mechanische Leistung	17
		Wirkungsgrad	18
		Feste und lose Rolle	18
		Temperatur	19
		Längen- und Volumenausdehnung	19
		Wärmemenge	20
		Mischungstemperatur	20
		Zug, Druck	20
	7.	Übersetzungsberechnungen	
	••	Flachriementrieb, Keilriementrieb	21
		Zahnradtrieb	22
		Schneckentrieb	22
		Kraftmoment (Drehmoment) bei Zahnradtrieben	22
	8.	Allgemeine Grundlagen der Elektrotechnik	
	0.	Leitwert, Leiterwiderstand	23
		Widerstandsänderung bei Temperaturänderung	23
		Ohmsches Gesetz	24
		Stromdichte	24
		Reihenschaltung von Widerständen	24
		Knotenpunktregel	24
		Parallelschaltung von Widerständen	24/25

Artikelnr.: 100131 | ISBN 978-3-87125-370-6

			Seite
Inhaltsverzeichnis	8.	Allgemeine Grundlagen der Elektrotechnik (Fortsetzung)	
		Umwandlung von Dreieck- in Sternschaltung	
		Spannungsteiler	
		Widerstandsbrücke	
		Meßbereichserweiterung	26 27
		Chemische Spannungsquellen	
		Elektrische Leistung, Arbeit, Kosten der Arbeit	
		Wirkungsgrad	
		Elektrische Arbeit und Wärme	
	9.	Magnetisches Feld	20
		Magnetische Durchflutung	
		Magnetische Flußdichte (Induktion)	
		Magnetischer Fluß	
		Magnetische Zugkraft	
		Kraft auf stromdurchflossenen Leiter	
		Induktion der Bewegung	32
		Induktivität einer Spule	
		Schaltung von Induktivitäten	32
	10.	Elektrisches Feld	
		Elektrische Feldstärke	
		Kapazität eines Kondensators	
		Ladung eines Kondensators	
		Spannungsteilung	
		opamangotanong	0.1
	11.	Grundgrößen des Wechselstromkreises	
		Frequenz, Periodendauer	35
		Phasenverschiebungswinkel	35
		Kreisfrequenz	
		Scheitelwert, Effektivwert, Augenblickswert	
		Arithmetischer Mittelwert	
		Kapazitiver und induktiver Blindwiderstand	
		Scheinwiderstand	
		Wediseistioning	30
	12.	Berechnungen im Wechselstromkreis	
		Reine Kapazität im WS-Kreis	
		Reihen- und Parallelschaltung von R und C	
		Reine Induktivität im WS-Kreis	
		Reihen- und Parallelschaltung von R und L	
		Reihen- und Parallelresonanz	
		nement und ratalienesolianz	40
	13.	Drehstrom	
		Sternschaltung	41
		Dreieckschaltung	
		Drehstromleistung	
		Netzkompensation	43
	14.	Loitungaharaaharaa	
	14.	Leitungsberechnung Unverzweigte Gleichstrom-, Wechselstrom- und Drehstromleitung	. 44
		onverzweigte dielonstrom-, wechseistrom- und Dienstromeitung	. 44
	15.	Elektrische Maschinen	
		Einphasentransformator	
		Drehstromtransformator	
		Synchrone Umdrehungsfrequenz, Schlupf	46

Inhaltsverzeichnis

5. Auflage 2003

Artikelnr.: 100131 | ISBN 978-3-87125-370-6

seit 1931

	\$	Seite
15.	Elektrische Maschinen (Fortsetzung)	
	Einphasen-Wechselstrommotor	46
	Drehstrommotor	46
	Gleichstrommotor, -generator	47
	Anlaufstrom, Anlaßwiderstand	47
6.	Elektronik	
	Verlustleistung einer Diode	48
	Zulässige Verlustleistung einer Z-Diode	48
	Differentieller Widerstand einer Z-Diode	48
	Spannungsstabilisierung	48
	Kollektor-Basis-Gleichstromverhältnis	49
	Transistorgrößen	49
	Transistor-Emitter-Schaltung	49
	Kippschaltung	50
	Operationsverstärker	51
7.	Vorlage für Ergänzungen	53
18.	Tabellen	
	Tabelle 1: Beziehungen zwischen den Einheiten wichtiger Größen	54

1. Allgemeine Hinweise

Die vorliegende Formelsammlung enthält Formeln, die bei den Zwischen- und Abschlußprüfungen in den Elektroberufen (Energietechnik) vorkommen können. Sie wurden auf der Grundlage der in den vergangenen Jahren von der PAL erarbeiteten Aufgabensätze zusammengestellt. Durch die Beschränkung auf die Grundformeln wird bewußt die Formelsammlung im Umfang klein gehalten und damit Übersichtlichkeit und schnelle Handhabung erreicht. Formeln spezieller Ausbildungsbereiche, wie Elektromaschinenbau, wurden nicht aufgenommen. Sie würden die in diesen Bereichen nicht tätigen Auszubildenden nur verunsichern.

Die in der Spalte "Einheit" der Formelsammlung genannten Einheiten sind die in der Praxis am häufigsten vorkommenden Einheiten. Grundsätzlich kann auch mit anderen dezimalen Teilen und Vielfachen der Einheit gerechnet werden.

Das Zeichen 1) hinter einer Gleichung weist darauf hin, daß diese Gleichung eine Zahlenwertgleichung ist. Sie führt nur dann zum richtigen Ergebnis, wenn die in der Spalte "Einheit" angegebenen Einheiten verwendet werden.

Artikelnr.: 100131 | ISBN 978-3-87125-370-6

20	Physikalische	Berechnungen
----	---------------------------------	--------------

Skizze	Formel- zeichen	Größe	Einheit	Formel
V ärmemenge	a	Wärmemenge	kJ	$Q = c \cdot m \cdot (\vartheta_2 - \vartheta_1)$
	m	Masse	kg	$Q = c \cdot m \cdot \Delta \vartheta$
	<i>d</i> ₁	Temperatur vor Erwärmung	°C	100-30
m - c	ϑ2	Temperatur nach Erwärmung	°C	A CONTRACTOR
	$\Delta \vartheta$	Temperatur- differenz	K	
	С	spezifische Wärmekapazität	kJ kg · K	2 Table - 100
Mischungstemperatur	m ₁ , m ₂	Massen	kg	$\hat{\sigma}_{m} = \frac{c_1 \cdot m_1 \cdot \hat{\sigma}_1 + c_2 \cdot m_2 \cdot \hat{\sigma}_2}{c_1 \cdot m_1 + c_2 \cdot m_2}$
91	ϑ1, ϑ2	Temperaturen der Stoffe	°C	$c_1 \cdot m_1 + c_2 \cdot m_2$
c ₁	ϑm	Mischungs- temperatur	°C	Education Control
$\frac{\vartheta_2}{c_2}$ m_2	c ₁ , c ₂	spezifische Wärme- kapazitäten	kJ kg · K	
_m				
ug	σ ₂	Zugspannung	N mm ²	$\sigma_{z} = \frac{F}{S}$
F	$\sigma_{z,zul}$	zulässige Zugspannung	N mm ²	$\sigma_{z, zul} = \frac{R_e}{v}$ zähe Werkstoffe, z.B. Stahl
s	Re	Streckgrenze	$\frac{N}{mm^2}$	$\sigma_{z,zul} = \frac{R_m}{v} \text{spröde Werkstoffe,} \\ z.B. Gußeisen}$
	R _m	Zugfestigkeit	$\frac{N}{mm^2}$	v z.B. Gußeisen $F_{\text{zul}} = \sigma_{\text{z,zul}} \cdot S$
	F	Zugkraft	N	1999
	F _{zul}	zulässige Zugkraft	N	Contract the second sec
₹ F	S	Querschnittsfläche	mm ²	
	ν	Sicherheitszahl		
ruck	σ_{d}	Druckspannung	$\frac{N}{mm^2}$	$\sigma_{\rm d} = \frac{F}{S}$
F	$\sigma_{\rm d,zul}$	zulässige Druckspannung	$\frac{N}{mm^2}$	$\sigma_{d, zul} = \frac{\sigma_{d, F}}{v}$ zähe Werkstoffe, z.B. Stahl
\mathbb{A}	$\sigma_{\sf d,F}$	Quetschgrenze	N mm ²	$\sigma_{d, zul} = \frac{\sigma_{d, B}}{v}$ spröde Werkstoffe, z.B. Gußeisen
s	$\sigma_{\sf d,B}$	Druckfestigkeit	N mm ²	v z.B. Gußeisen $F_{zul} = \sigma_{d,zul} \cdot S$
11-47	F	Druckkraft	N	2000
	Fzul	zulässige Druckkraft	N	
1F	S	Querschnittsfläche Sicherheitszahl	mm ²	
		Oronterneriozani		

Artikelnr.: 100131 | ISBN 978-3-87125-370-6

7	Übersetzungsberechnungen

	Formal-			7. Übersetzungsberechnungen
Skizze	Formel- zeichen	Größe	Einheit	Formel
Einfacher Flachriementrieb	<i>d</i> ₁	Durchmesser treibende Scheibe	mm	$n_1 \cdot d_1 = n_2 \cdot d_2$ $\pi \cdot d_1 \cdot n_1 ^{(1)}$
	d ₂	Durchmesser getriebene Scheibe	mm	$v = \frac{\pi \cdot d_1 \cdot n_1}{60 \cdot 1000}$
→ V	n ₁	Umdrehungsfrequenz (Drehzahl) treibende Scheibe	min ⁻¹	$v = \frac{\pi \cdot d_2 \cdot n_2}{60 \cdot 1000}$
01	n ₂	Umdrehungsfrequenz (Drehzahl) getriebene Scheibe	min ⁻¹	$i = \frac{d_2}{d_1}$
treibend getrieben	v	Riemen- geschwindigkeit	m s	$i = \frac{n_1}{n_2}$
	i	Übersetzungs- verhältnis		i > 1 Übersetzung ins Langsame
		Section Section 1	100	i < 1 Übersetzung ins Schnelle
Doppelter Flachriementrieb	d ₁ , d ₃	Durchmesser treibende Scheiben	mm	$n_1 \cdot d_1 \cdot d_3 = n_4 \cdot d_2 \cdot d_4$
	d ₂ , d ₄	Durchmesser getriebene Scheiben	mm	$i_1 = \frac{d_2}{d_1}$
n ₂ = n ₃	n ₁	Umdrehungsfrequenz (Drehzahl) 1. treibende Scheibe	min ⁻¹	$i_1 = \frac{n_1}{n_2}$
	n ₂	Umdrehungsfrequenz (Drehzahl) 1. getriebene Scheibe	min ⁻¹	$i_2 = \frac{d_4}{d_3}$
getrieben	п3	Umdrehungsfrequenz (Drehzahl) 2. treibende Scheibe	min ⁻¹	$i_2 = \frac{n_3}{n_4}$
A A	n ₄	Umdrehungsfrequenz (Drehzahl) 2. getriebene Scheibe	min ⁻¹	$i = i_1 \cdot i_2$
n_1	i ₁	1. Einzelübersetzung		$i = \frac{n_1}{n_4}$
treibend	<i>i</i> ₂	2. Einzelübersetzung		$i = \frac{d_2 \cdot d_4}{d_1 \cdot d_3}$
	i	Gesamtübersetzung		$r = \frac{1}{d_1 \cdot d_3}$
Einfacher Keilriementrieb	d _{w1}	Wirkdurchmesser treibende Scheibe	mm	$n_1 \cdot d_{\mathbf{w}1} = n_2 \cdot d_{\mathbf{w}2}$
	d _{w2}	Wirkdurchmesser getriebene Scheibe	mm	$i = \frac{d_{w2}}{d_{w1}}$
n ₁ d ₃ n n ₂	<i>n</i> ₁	Umdrehungsfrequenz (Drehzahl) treibende Scheibe	min ⁻¹	$i = \frac{n_1}{n_2}$
	n ₂	Umdrehungsfrequenz (Drehzahl) getriebene Scheibe	min ⁻¹	
	í	Übersetzungs- verhältnis		
0				

Artikelnr.: 100131 | ISBN 978-3-87125-370-6

seit 1931

Stichwortverzeichnis

55

Stichwortverzeichnis

Anlaßwiderstand 47 Anlaufstrom 47 Arbeit, elektrische 28 Arithmetischer Mittelwert 35 Augenblickswert 35

Blindwiderstand, induktiver 36 Blindwiderstand, kapazitiver 36

Chemische Spannungsquelle 27

Dichte 15
Diode
differentieller Widerstand einer
Z-Diode 48
Verlustleistung 48
Drehbewegung, gleichförmig 15
Drehmoment (Kraftmoment) 16
bei Zahnradtrieben 22
Drehstrom 41, 42, 43

Drehstrom-Asynchronmotor 46
Drehstromleistung 43
Drehstromleitung 44
Drehstrommotor 46
Drehstromtransformator 45
Dreieck
Längen und Winkel 12

Pythagoras 10 Fläche 11 Dreieckschaltung 25,42 Dreisatzrechnung 7 Druck 20 Durchflutung, magnetische 30 Dynamik, Grundgesetz 15

Kippschaltun
Effektivwert 35 Kippschaltun
Einheiten wichtiger Größen, Beziehungen 54 verhältnis 45
Einphasen-Wechselstrommotor 46 Kondensator
Einphasentransformator 45 Kondensator
Einseitiger Hebel 16 Ladung 3
Elektrische Arbeit 28 Parallelscl
Elektrische Leistung 28 Kräfte

Elektrische Maschinen 45, 46, 47

Elektrisches Feld 33, 34

Elektronik 48, 49, 50, 51, 52

Feldstärke elektrische 33 magnetische 30 Feste Rolle 18 Festigkeitsberechnungen 20 Flächenberechnungen 10, 11, 12 Flachriementireb 21 Frequenz 35

Geschwindigkeit 15 Gewichtskraft 15 Gleichförmige Drehbewegung 15 Gleichförmige, geradlinige Bewegung 15 Gleichstromgenerator 47 Gleichstrommotor 47 Gleichstromleitung 44 Gleichungen, umstellen 9 Griechisches Alphabet 6 Grundgesetz der Dynamik 15

Hebel zweiseitig 17 einseitig 16 Hohlzylinder 14

Induktion der Bewegung 32 Induktivität einer Spule 32 Induktivität im Wechselstromkreis 38

Kapazität im Wechselstromkreis 37 Kegel 14 Keilriementrieb 21 Kippschaltung 50 Knotenpunktsregel 24 Kollektor-Basis-Gleichstromverhältnis 49

vernatinis 49
Kondensator
Kapazität 33
Ladung 33
Parallelschaltung 34
Reihenschaltung 34
Kräfte
addieren 16
subtrahieren 16

Kräftezerlegung 16

Kräftezusammensetzung 16 Kraftmoment (Drehmoment) 16 bei Zahnradtrieben 22 Kreis 12 Kreisbogen 12 Kreisfrequenz 35 Kreisring 12 Kugel 14

Längen am rechtwinkligen Dreieck 10, 12 Längenausdehnung 19 Leistung, elektische 28 Leitungsberechnungen 44 Leitwert 23 Leitwiderstand 23 Lose Rolle 18

Magnetische Durchflutung 30
Magnetische Feldstärke 30
Magnetische Flußdichte 31
Magnetische Zugkraft 31
Magnetischer Fluß 31
Magnetisches Feld 30, 31, 32
Masse 15
Mathematische Zeichen 6
Mechanische Arbeit 17
Meschungstemperatur 20
Netzkompensation 43

Ohmsches Gesetz 24 Operationsverstärker 51, 52

Parallelogramm 11
Parallelresonanz 40
Parallelschaltung
von mehr als zwei Widerständen 25

von zwei Widerständen 24 Parallelschaltung von chemischen Spannungsquellen 27 Parallelschaltung von mehreren Induktivitäten 32

Parallelschaltung von Wirkwiderstand und Induktivität 38 Parallelschaltung von Wirkwiderstand und Kondensator 37

Artikelnr.: 100131 | ISBN 978-3-87125-370-6

seit 1931

56 Stichwortverzeichnis

Parallelschaltung von Wirkwiderstand, Induktivität und Kapazität 39 Parallelschaltung von zwei Induktivitäten 32 Periodendauer 35 Phasenverschiebungswinkel 35 Potentielle Energie 17 Potenzen 8 Prisma 13 Prozentrechnung 8 Pyramide 13 Pythagoras 10

Quadrat 10

Raute 22

Randabstände 10

Rechteck 10
Regelmäßiges Vieleck 11
Reihenresonanz 40
Reihenschaltung von chemischen
Spannungsquellen 27
Reihenschaltung von Induktivitäten 32
Reihenschaltung von Widerständen 24
Reihenschaltung von Wirkwiderstand
und Induktivität 38

Reihenschaltung von Wirkwiderstand und Kondensator 37 Reihenschaltung von Wirkwiderstand, Induktivität und Kapazität 39

Scheinwiderstand 36 Scheitelwert 35 Schiefe Ebene 18 Schlupf 46 Schneckentrieb 22 Spannung 24 Spannungsmesser 26 Spannungsstäbilisierung 48 Spannungsteiler, belasteter 26 Spannungsteiler, unbelasteter 25 Spannungsteilung bei Reihenschaltung 34

schanung 34 Spannungswellen, chemische 27 Spitze-Spitze-Wert 35 Sternschaltung 25 Sternschaltung 41 Stromdichte 24 Strommesser 26

Stromstärke 24

Synchrone Umdrehungsfrequenz 46

Teilung von Längen 10 Temperatur 19 Transformator 45 Transistor-Emitterschaltung 49 Transistorgrößen 49 Trapez 11

Übersetzungsberechnungen 21, 22 Übersetzungsverhältnis 21, 22 Umfangsgeschwindigkeit 15 Umstellen von Gleichungen 9

Verlustleistung einer Diode 48
Vieleck, regelmäßiges 11
Volumenausdehnung 19
Volumenberechnungen 13, 14
Vorsätze für dezimale Teile und
Vielfache 6
Vorsatzzeichen für dezimale Teile
und Vielfache 6

Wärmemenge 20, 29 Wechselstrom-Maschinen 46 Wechselstromkreis, Berechnungen 37, 38, 39, 40 Wechselstromkreis, Grundgrößen 35, 36

Wechselstromleistung 36 Wechselstromleitung, Berechnung 44 Widerstand 24 Widerstandsänderung bei Temperaturänderung 23

Widerstandsbestimmung durch Strom- und Spannungsmesser 27 Widerstandsbrücke 26 Winkel im rechtwinkligen Dreieck 12

Winkelfunktionen, Berechnungen 12 Winkelhelbel 17

Wirkungsgrad 18, 29 Würfel 13

Zahnradberechnungen 22 Zahnradtrieb 22 Zinsrechnung 8 Zug 20 Zugkraft, magnetische 31 Zweiseitiger Hebel 17 Zylinder 13